222 research outputs found

    Household Assets and Health in China: Evidence and Policy Implications

    Get PDF
    China’s health care reform of the 1990s has not yielded much success. The market-oriented health system has resulted in declines in fairness of health services and efficiency of investment in the health sector. Further health care reform will be required. Among many options, asset-based policy has demonstrated some potential in domestic policy development. To provide evidence to inform health policy development in China, this study focuses on effects of household assets on health in China. Specifically, the current study examines how household assets may affect health status and how assets differ from income in predicting health status. Using a random sample of Chinese elderly, we find that asset holding in the form of household durables and household utilities has both direct and indirect effects on health status. Household assets directly affect access to medical care and indirectly affect health by influencing health behavior and psychological condition. In other words, in addition to economic effects, household assets appear to have behavioral and psychological effects on health. Interestingly, these effects appear to be associated with assets, but not with income. Implications for asset-building policy are suggested as a complement to existing health care models

    Statefinder Parameters for Five-Dimensional Cosmology

    Full text link
    We study the statefinder parameter in the five-dimensional big bounce model, and apply it to differentiate the attractor solutions of quintessence and phantom field. It is found that the evolving trajectories of these two attractor solutions in the statefinder parameters plane are quite different, and that are different from the statefinder trajectories of other dark energy models.Comment: 8 pages, 12 figures. accepted by MPL

    Equivalent modeling and multi-parameter coupling optimization for DFIG-based wind farms considering SSO mode

    Get PDF
    As a low-carbon and environmentally friendly renewable energy source, wind power has been globally recognized as the best solution to achieve energy saving and emission reduction and promote low-carbon economic growth. With the increase of wind power penetration, wind power has a great impact on sub-synchronous state stability and dynamic characteristics of the grid-connected system. Aiming at the fact that the correlation between clustering indexes and sub-synchronous oscillation (SSO) mode and the difference of the contribution to the clustering results are seldom considered in the current equivalent modeling of doubly-fed induction generator (DFIG)-based wind farm, this paper proposes a clustering method based on the index dimension reduction and weighted fuzzy C-means (WFCM) clustering algorithm. Besides, for the SSO study of the grid-connected system without sufficiently considering the coupling effects between controller parameters, a multi-parameter coupling optimization design strategy combining orthogonal experiment method (OEM) and response surface method is proposed. Firstly, the dominant variables of SSO mode of the DFIG-based wind farm connected to weak grid by series compensation system are taken as the initial clustering indexes. After dimension reduction by principal component analysis, the WFCM algorithm is utilized to cluster the wind farm. Then, the proportional and integral coefficients of the grid-side controller, rotor-side controller and phase-locked loop are optimized to achieve the simultaneous optimization of the SSO characteristics and dynamic characteristics of the system. Finally, the interaction between control parameters and the influence degree and trend on the system performance are quantitatively evaluated, and the optimal parameter combination is obtained. The proposed strategy can mitigate SSO more effectively while improving anti-interference than the particle swarm optimization based on OEM

    Environmental-Friendly Catalytic Oxidation Processes Based on Hierarchical Titanium Silicate Zeolites at SINOPEC

    Get PDF
    Since it was claimed by EniChem in 1983 for the first time, titanium silicate‐1 (TS‐1) zeolite presented the most delightful catalytic performance in the area of selective organic oxidation reactions. To enhance the mass diffusion property, hierarchical titanium silicate with hollow cavities within crystal was prepared by using a post‐synthesis treatment in the presence of organic template, and then, it was commercially produced and employed in many industrial catalytic oxidation processes, such as propylene epoxidation, phenol hydroxylation, and cyclohexanone ammoximation. Moreover, we also developed several totally novel oxidation reactions on hollow titanium silicate (HTS) zeolite, i.e., Baeyer‐Villiger oxidation of cyclohexanone and chlorohydrination of allyl chloride with HCl and H2O2. In all cases, HTS shows much better catalytic performance than TS‐1, attributing to the mass diffusion intensification by introducing hollow cavities. On the other hand, enormous works on synthesizing hierarchical TS‐1 zeolites with open intracrystalline mesopores have been done via silanization treatment and recrystallization. Based on them, several bulk molecule oxidation processes with tert‐butyl hydroperoxide, such as epoxidation of fatty acid methyl ester (FAME) and large olefins, have been carried out. As a consequence, hierarchical TS‐1 zeolites supply a platform for developing environmental‐friendly catalytic oxidation processes to remarkably overcome the drawbacks of traditional routes
    • 

    corecore